Test page
Hello world
kaggle guide ko!!
https://medium.com/@kaggleteam/how-to-get-started-with-data-science-in-containers-6ed48cb08266
Kaggle note랑 연동 하는 방법이 나와 있는듯
나중에 Posting 해 봐야지 ^^
https://www.chartjs.org/docs/latest/samples/bar/horizontal.html
chart에대해 많은 List가 있는데 완전 유용할듯
neo4j 를 이용하여 graph 만들수 있다.
git blog: Hexo로 multi, push
1 |
|
내가 push 할때 쓰려고 저장
Kaggle/competitions
kaggle competition에 참가 할 수 있다.
1 | !pip install kaggle |
Requirement already satisfied: kaggle in /usr/local/lib/python3.7/dist-packages (1.5.12)
Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/dist-packages (from kaggle) (2.8.2)
Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from kaggle) (1.24.3)
Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.7/dist-packages (from kaggle) (1.15.0)
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from kaggle) (2.23.0)
Requirement already satisfied: python-slugify in /usr/local/lib/python3.7/dist-packages (from kaggle) (5.0.2)
Requirement already satisfied: certifi in /usr/local/lib/python3.7/dist-packages (from kaggle) (2021.5.30)
Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from kaggle) (4.62.3)
Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.7/dist-packages (from python-slugify->kaggle) (1.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->kaggle) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->kaggle) (2.10)
1 | from google.colab import files |
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-57-5e2b5f92ba05> in <module>()
1 from google.colab import files
2
----> 3 uploaded = files.upload()
4
5 for fn in uploaded.keys():
/usr/local/lib/python3.7/dist-packages/google/colab/files.py in upload()
62 result = _output.eval_js(
63 'google.colab._files._uploadFiles("{input_id}", "{output_id}")'.format(
---> 64 input_id=input_id, output_id=output_id))
65 files = _collections.defaultdict(_six.binary_type)
66 # Mapping from original filename to filename as saved locally.
/usr/local/lib/python3.7/dist-packages/google/colab/output/_js.py in eval_js(script, ignore_result, timeout_sec)
38 if ignore_result:
39 return
---> 40 return _message.read_reply_from_input(request_id, timeout_sec)
41
42
/usr/local/lib/python3.7/dist-packages/google/colab/_message.py in read_reply_from_input(message_id, timeout_sec)
99 reply = _read_next_input_message()
100 if reply == _NOT_READY or not isinstance(reply, dict):
--> 101 time.sleep(0.025)
102 continue
103 if (reply.get('type') == 'colab_reply' and
KeyboardInterrupt:
데이터 다운로드 및 불러오기
1 | !kaggle competitions list |
Warning: Looks like you're using an outdated API Version, please consider updating (server 1.5.12 / client 1.5.4)
ref deadline category reward teamCount userHasEntered
--------------------------------------------- ------------------- --------------- --------- --------- --------------
contradictory-my-dear-watson 2030-07-01 23:59:00 Getting Started Prizes 63 False
gan-getting-started 2030-07-01 23:59:00 Getting Started Prizes 81 False
store-sales-time-series-forecasting 2030-06-30 23:59:00 Getting Started Knowledge 487 False
tpu-getting-started 2030-06-03 23:59:00 Getting Started Knowledge 157 False
digit-recognizer 2030-01-01 00:00:00 Getting Started Knowledge 1459 False
titanic 2030-01-01 00:00:00 Getting Started Knowledge 14879 False
house-prices-advanced-regression-techniques 2030-01-01 00:00:00 Getting Started Knowledge 4418 True
connectx 2030-01-01 00:00:00 Getting Started Knowledge 263 False
nlp-getting-started 2030-01-01 00:00:00 Getting Started Knowledge 1321 False
competitive-data-science-predict-future-sales 2022-12-31 23:59:00 Playground Kudos 12891 False
g-research-crypto-forecasting 2022-02-01 23:59:00 Featured $125,000 148 False
petfinder-pawpularity-score 2022-01-13 23:59:00 Research $25,000 1631 False
optiver-realized-volatility-prediction 2022-01-10 23:59:00 Featured $100,000 3852 False
nfl-big-data-bowl-2022 2022-01-06 23:59:00 Analytics $100,000 0 False
sartorius-cell-instance-segmentation 2021-12-30 23:59:00 Featured $75,000 495 False
wikipedia-image-caption 2021-12-09 11:59:00 Playground Swag 71 False
lux-ai-2021 2021-12-06 23:59:00 Featured $10,000 928 False
tabular-playground-series-nov-2021 2021-11-30 23:59:00 Playground Swag 352 False
kaggle-survey-2021 2021-11-28 23:59:00 Analytics $30,000 0 False
chaii-hindi-and-tamil-question-answering 2021-11-15 23:59:00 Research $10,000 807 False
1 | !kaggle competitions download -c house-prices-advanced-regression-techniques |
User cancelled operation
1 | import pandas as pd |
Data Loading is done!
데이터 둘러보기
1 | print("The shape of Train Data is:", train.shape) |
The shape of Train Data is: (1460, 81)
The shape of Test Data is: (1459, 80)
1 | print(train.info()) |
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Id 1460 non-null int64
1 MSSubClass 1460 non-null int64
2 MSZoning 1460 non-null object
3 LotFrontage 1201 non-null float64
4 LotArea 1460 non-null int64
5 Street 1460 non-null object
6 Alley 91 non-null object
7 LotShape 1460 non-null object
8 LandContour 1460 non-null object
9 Utilities 1460 non-null object
10 LotConfig 1460 non-null object
11 LandSlope 1460 non-null object
12 Neighborhood 1460 non-null object
13 Condition1 1460 non-null object
14 Condition2 1460 non-null object
15 BldgType 1460 non-null object
16 HouseStyle 1460 non-null object
17 OverallQual 1460 non-null int64
18 OverallCond 1460 non-null int64
19 YearBuilt 1460 non-null int64
20 YearRemodAdd 1460 non-null int64
21 RoofStyle 1460 non-null object
22 RoofMatl 1460 non-null object
23 Exterior1st 1460 non-null object
24 Exterior2nd 1460 non-null object
25 MasVnrType 1452 non-null object
26 MasVnrArea 1452 non-null float64
27 ExterQual 1460 non-null object
28 ExterCond 1460 non-null object
29 Foundation 1460 non-null object
30 BsmtQual 1423 non-null object
31 BsmtCond 1423 non-null object
32 BsmtExposure 1422 non-null object
33 BsmtFinType1 1423 non-null object
34 BsmtFinSF1 1460 non-null int64
35 BsmtFinType2 1422 non-null object
36 BsmtFinSF2 1460 non-null int64
37 BsmtUnfSF 1460 non-null int64
38 TotalBsmtSF 1460 non-null int64
39 Heating 1460 non-null object
40 HeatingQC 1460 non-null object
41 CentralAir 1460 non-null object
42 Electrical 1459 non-null object
43 1stFlrSF 1460 non-null int64
44 2ndFlrSF 1460 non-null int64
45 LowQualFinSF 1460 non-null int64
46 GrLivArea 1460 non-null int64
47 BsmtFullBath 1460 non-null int64
48 BsmtHalfBath 1460 non-null int64
49 FullBath 1460 non-null int64
50 HalfBath 1460 non-null int64
51 BedroomAbvGr 1460 non-null int64
52 KitchenAbvGr 1460 non-null int64
53 KitchenQual 1460 non-null object
54 TotRmsAbvGrd 1460 non-null int64
55 Functional 1460 non-null object
56 Fireplaces 1460 non-null int64
57 FireplaceQu 770 non-null object
58 GarageType 1379 non-null object
59 GarageYrBlt 1379 non-null float64
60 GarageFinish 1379 non-null object
61 GarageCars 1460 non-null int64
62 GarageArea 1460 non-null int64
63 GarageQual 1379 non-null object
64 GarageCond 1379 non-null object
65 PavedDrive 1460 non-null object
66 WoodDeckSF 1460 non-null int64
67 OpenPorchSF 1460 non-null int64
68 EnclosedPorch 1460 non-null int64
69 3SsnPorch 1460 non-null int64
70 ScreenPorch 1460 non-null int64
71 PoolArea 1460 non-null int64
72 PoolQC 7 non-null object
73 Fence 281 non-null object
74 MiscFeature 54 non-null object
75 MiscVal 1460 non-null int64
76 MoSold 1460 non-null int64
77 YrSold 1460 non-null int64
78 SaleType 1460 non-null object
79 SaleCondition 1460 non-null object
80 SalePrice 1460 non-null int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
None
1 | print(test.info()) |
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1459 entries, 0 to 1458
Data columns (total 80 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Id 1459 non-null int64
1 MSSubClass 1459 non-null int64
2 MSZoning 1455 non-null object
3 LotFrontage 1232 non-null float64
4 LotArea 1459 non-null int64
5 Street 1459 non-null object
6 Alley 107 non-null object
7 LotShape 1459 non-null object
8 LandContour 1459 non-null object
9 Utilities 1457 non-null object
10 LotConfig 1459 non-null object
11 LandSlope 1459 non-null object
12 Neighborhood 1459 non-null object
13 Condition1 1459 non-null object
14 Condition2 1459 non-null object
15 BldgType 1459 non-null object
16 HouseStyle 1459 non-null object
17 OverallQual 1459 non-null int64
18 OverallCond 1459 non-null int64
19 YearBuilt 1459 non-null int64
20 YearRemodAdd 1459 non-null int64
21 RoofStyle 1459 non-null object
22 RoofMatl 1459 non-null object
23 Exterior1st 1458 non-null object
24 Exterior2nd 1458 non-null object
25 MasVnrType 1443 non-null object
26 MasVnrArea 1444 non-null float64
27 ExterQual 1459 non-null object
28 ExterCond 1459 non-null object
29 Foundation 1459 non-null object
30 BsmtQual 1415 non-null object
31 BsmtCond 1414 non-null object
32 BsmtExposure 1415 non-null object
33 BsmtFinType1 1417 non-null object
34 BsmtFinSF1 1458 non-null float64
35 BsmtFinType2 1417 non-null object
36 BsmtFinSF2 1458 non-null float64
37 BsmtUnfSF 1458 non-null float64
38 TotalBsmtSF 1458 non-null float64
39 Heating 1459 non-null object
40 HeatingQC 1459 non-null object
41 CentralAir 1459 non-null object
42 Electrical 1459 non-null object
43 1stFlrSF 1459 non-null int64
44 2ndFlrSF 1459 non-null int64
45 LowQualFinSF 1459 non-null int64
46 GrLivArea 1459 non-null int64
47 BsmtFullBath 1457 non-null float64
48 BsmtHalfBath 1457 non-null float64
49 FullBath 1459 non-null int64
50 HalfBath 1459 non-null int64
51 BedroomAbvGr 1459 non-null int64
52 KitchenAbvGr 1459 non-null int64
53 KitchenQual 1458 non-null object
54 TotRmsAbvGrd 1459 non-null int64
55 Functional 1457 non-null object
56 Fireplaces 1459 non-null int64
57 FireplaceQu 729 non-null object
58 GarageType 1383 non-null object
59 GarageYrBlt 1381 non-null float64
60 GarageFinish 1381 non-null object
61 GarageCars 1458 non-null float64
62 GarageArea 1458 non-null float64
63 GarageQual 1381 non-null object
64 GarageCond 1381 non-null object
65 PavedDrive 1459 non-null object
66 WoodDeckSF 1459 non-null int64
67 OpenPorchSF 1459 non-null int64
68 EnclosedPorch 1459 non-null int64
69 3SsnPorch 1459 non-null int64
70 ScreenPorch 1459 non-null int64
71 PoolArea 1459 non-null int64
72 PoolQC 3 non-null object
73 Fence 290 non-null object
74 MiscFeature 51 non-null object
75 MiscVal 1459 non-null int64
76 MoSold 1459 non-null int64
77 YrSold 1459 non-null int64
78 SaleType 1458 non-null object
79 SaleCondition 1459 non-null object
dtypes: float64(11), int64(26), object(43)
memory usage: 912.0+ KB
None